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Talk Outline

I Reminder – deterministic and nondeterministic time classes

I The class NP
I Verifiability

I Additional NP languages

I The class co-NP
I P Verses NP
I NP-completeness

I Satisfiability

I Cook-Levin theorem

Sipser’s book, 7.4–7.5
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Reminder — Deterministic time

Definition 1 (deterministic Time)
Let M be a deterministic TM, and let t : N 7→ N. We say that M runs in time
t(n), if For every input x of length n, the number of steps that M(x) uses is at
most t(n).

Question 2
What is a “step"?

Definition 3 (DTIME)

For t : N 7→ N, let DTIME(t(n)) =
{L ⊆ Σ∗ : L is decided by an O(t(n))-time single tape TM}

Note that t(n) running time, is also required for strings not in L.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 3 / 52



Non-deterministic time

Definition 4 (nondeterministic time)

A non-deterministic TM N runs in time f (n), where f : N 7→ N, if for every input
x of length n, the maximum number of steps that N uses on any branch of its
computation tree on x , is at most f (n).

Notice that also non-accepting branches must reject within f (n) many steps.

f(n)

deterministic nondeterministic

f(n)

TAKE NOTE: the depth of the tree, not the size of the tree!!!
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Part I

The Class NP
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The Class NP

Definition 5 (NTIME)

For t : N 7→ N, let NTIME(t(n)) =
{L ⊆ Σ∗ : L is decided by an O(t(n))-time single tape NTM}

NP is the set of languages decidable in polynomial time on non-deterministic
TMs.

Definition 6 (NP)

NP =
⋃

c≥0 NTIME(nc)

The class NP is important because:

I Insensitive to choice of reasonable non-deterministic computational
model.

I Roughly corresponds to problems whose positive solutions are efficiently
verified.
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Are language in NP decidable in polynomial time?

We don’t know!

but what we do know is this:

Large class of fundamental languages in NP that are “the
hardest”

(i.e., if ONE is efficiently solvable then ALL are efficiently solvable)
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Hamiltonian path

A Hamiltonian path in a directed G visits each node exactly once.

HAMPATH = {〈G, s, t〉 : G has Hamiltonian path from s to t}

Question 7
How hard is it to decide HAMPATH?

Easy to obtain exponential time algorithm:

I Generate each potential path

I Check whether it is Hamiltonian
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HAMPATH ∈ NP
Here is an NTM that decides HAMPATH in polynomial time.

Algorithm 8 (N)

On input 〈G = (V ,E), s, t〉,

1. Guess a list of numbers p1, . . . ,pm, where m = |V | and 1 ≤ pi ≤ m.

2. Accept if all the following hold (otherwise Reject):

I No repetitions in list
I p1 = s and pm = t .
I (pi ,pi+1) ∈ E for every 1 ≤ i ≤ m − 1

I How does a TM guess a string?

Claim 9
N runs in polynomial time
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Verifiability of HAMPATH

This problem has one very interesting feature: polynomial verifiability:

We don’t know a fast way to find a Hamiltonian path, but we can
check whether a given path is Hamiltonian in polynomial time.

Verifying correctness of a path is much easier than determining whether one
exists
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Section 1

Verifiability
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Verifiability

Definition 10 (verifier)

A deterministic algorithm V is a verifier for a language L, if

I x ∈ L =⇒ ∃c ∈ {0,1}∗ s.t. V(x , c) = 1.

I x /∈ L =⇒ @c ∈ Σ∗ s.t. V(x , c) = 1.

I The verifier uses the additional information c to verify x ∈ L.
I If V accepts (x , c) (i.e., outputs 1), the string c is called a certificate (also

known as, proof or witness) for x .
I A polynomial verifier runs in polynomial time in |x | (i.e., in the length of

its left-hand-side input parameter).
I A language L is polynomially verifiable, if it has a polynomial verifier.
I A certificate for 〈G, s, t〉 ∈ HAMPATH is simply the Hamiltonian path from

s to t .
Easy to verify in time polynomial in |〈G, s, t〉| whether given path is
Hamiltonian.

I Not all languages are known to be polynomially verifiable.
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NP and Verifiability

Theorem 11
A language is in NP iff it has a polynomial time verifier.

Proof’s idea:

I The NTM emulates the verifier by guessing the certificate.

I Verifier emulates NTM by using accepting branch as certificate.
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Verifiability =⇒ NP

Claim 12
If L has a poly-time verifier, then it is decided by some polynomial-time NTM.

Proof: Let V be poly-time verifier for L of running time p(n) for some p ∈ poly.

Algorithm 13 (N)

On input x ∈ {0,1}n:

1. Guess a string c of length p(n).

2. Emulate V on 〈x , c〉

3. Accept if V accepts; Otherwise Reject.

♣
I Why is it suffices to guess a string of length p(n)?
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NP =⇒ Verifiability

Claim 14
If L is decided by a polynomial-time NTM N, then L has a poly-time verifier.

Proof: Assume for simplicity that at each step of N, the number of possible
non-deterministic moves is at most two.

Algorithm 15 (V)

On input (x , c):

1. Emulate N(x), treating each symbol of c as a description of the
non-deterministic choice in each step of N.

2. Accept if this branch accepts; Otherwise Reject.

♣
Without the simplifying assumption?
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Section 2

A few more NP languages
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CLIQUE

A clique in a graph is a subgraph where every two nodes are connected by an
edge.
A k -clique is a clique of size k .

Question 16
What is the largest k -clique in the figure?
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CLIQUE cont.

CLIQUE = {〈G, k〉 : G is an undirected graph with a k -clique}

Theorem 17
CLIQUE ∈ NP

Proof’s idea: The clique is the certificate.

Algorithm 18 (V)

On input (〈G, k〉, c)
Accept if c is a k -clique subgraph of G;
Otherwise Reject.
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Independent set

An independent set in a graph is a set of vertexes, no two of which are linked
by an edge.
A k -IS is an independent set of size k .

Question 19
What is the largest k -IS in the figure?
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Independent set cont.

IND-SET = {〈G, k〉 : G contains an independent set of size k}

Theorem 20
IND-SET ∈ NP

Proof’s idea: The independent set is the certificate.

Algorithm 21 (V)

On input (〈G, k〉, c)
Accept if c is a k -IS of G (no edges between nodes in c, and |c| = k );
Otherwise Reject.
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Section 3

co-NP
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The class co-NP
CLIQUE = {〈G, k〉 : G is an undirected graph with no k -clique} seems not to
be member of NP.
It seems harder to efficiently verify that something does not exist than to
efficiently verify that something does exist.

Definition 22 (co-NP)

co-NP = {L : L ∈ NP}.

But.. we are not sure...So far, no one knows if co-NP is distinct from NP.

Claim 23
P ⊆ co-NP.

Proof? L ∈ P =⇒ L ∈ P =⇒ L ∈ NP =⇒ L ∈ co-NP.

Is Primality in NP? co-NP?
How would you prove that a number is prime without trying all divisors?
Actually it is in P! (not obvious at all)
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Section 4

P vs. NP
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P vs. NP

NP

P P=NP

The question P ?
= NP is one of the great unsolved mysteries in

contemporary mathematics.
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P vs. NP

I Most computer scientists believe the two classes are not equal

I Most bogus proofs show them equal (?)

I One of 7 Clay Millenium Prize problems (1,000,000$!)

I “Computer Science’s greatest intellectual export” (Papadimitriou 2007)
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P Vs. NP, cont.

If P differs from NP, then the distinction between P and NP \ P is
meaningful and important.

I languages in P are tractable

I languages in NP \ P are intractable

Until we can prove that P 6= NP, there is no hope of proving that a specific
language lies in NP \ P.

Nevertheless, we can prove statements of the form

If A ∈ NP \ P, then B ∈ NP \ P.
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Section 5

NP Completeness
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NP Completeness

P

NP

NP-
complete

The class of NP-complete languages are

I “hardest” languages in NP
I If any NP-complete L ∈ P, then NP = P.

Question 24
Are there NP-complete languages?
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Polynomial-time reducibility

Definition 25 (poly-time computable functions)

A function f : Σ∗ 7→ Σ∗ is polynomial-time computable, if there is a poly-time
deterministic TM that

I starts with input w , and

I halts with f (w) on tape.

Definition 26 (poly-time reduction)

A polynomial-time computable f : Σ∗ 7→ Σ∗ is a poly-time reduction from
language A to B, if x ∈ A⇐⇒ f (x) ∈ B for every x ∈ Σ∗.
Is such a reduction from A to B exists, we say that A is poly- time mapping
reducible to B, denoted A ≤P B.

The mapping f efficiently converts questions about membership in A to
membership in B.
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Example: CLIQUE ≤P IND-SET

Proof:

Definition 27
The complement of a graph G = (V ,E) is a graph Gc = (V ,Ec), where
Ec = {(v1, v2) : v1, v2 ∈ V and (v1, v2)6∈E}.

The reduction f (G, k) from CLIQUE to IND-SET simply computes the
complement of the graph and outputs (Gc , k).

f satisfies:

I U is a clique in G ⇐⇒ U is a independent set in Gc .

I computable in polynomial time!

♣

Remark 28
Same reduction shows that IND-SET ≤P CLIQUE

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 30 / 52



Reductions to P

Theorem 29

If A ≤P B and B ∈ P then A ∈ P.

Proof:

I Let f the reduction from A to B, computed by TM Mf .
On input x , the TM Mf makes at most cf · |x |af steps.

I Let MB be the poly-time decider for B.
On input y , the TM MB makes at most cB · |y |aB steps.

Algorithm 30 (Decider MA for A)

On input x , return MB(f (x))

I MA decides A
I Since |f (x)| ≤ cf |x |af , running time of MB(x), is at most

cB · (cf · |x |af )aB = (cB · caB
f ) · |x |af ·aB ∈ poly(|x |)

Hence, A ∈ P
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What A ≤P B tells us about B?

Question 31
Assume that {0n1n : n ≥ 0} ≤P L. Does it yield that L ∈ P?

Answer: No. (Reduction in the wrong direction!)

Let L = HTM,ε and define f (x) =

{
Mstop, x ∈ {0n1n : n ∈ N}
Mno−stop, otherwise. .

A ≤P B does tell us that B is “at least as hard" as A.
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NP completeness, formal definition

Definition 32 (NP-complete)

A language B is NP-complete, if

I B ∈ NP, and

I Every A ∈ NP is poly-time reducible to B (i.e., A ≤P B)

Let NPC denote the class of all NP-complete languages.

Compare to

Definition 33 (RE-complete)

A language B is RE-complete, if

I B ∈ RE , and

I Every A ∈ RE is mapping reducible to B.
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Why NP completeness?

Theorem 34

If B ∈ NPC and B ∈ P, then P = NP.

Proof: Immediately follows by Thm 29. ♣

To show P = NP (and make an instant fortune, see
www.claymath.org/millennium/P_vs_NP/), suffices to find a polynomial-time
algorithm for any NP-complete problem.

Question 35
Is NPC empty?
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NPC Is not empty

ANP = {〈M, x ,1n〉 : M is a TM ∧ ∃c ∈ Σ∗ s.t. M(x , c) accepts within n steps}.

Theorem 36
ANP ∈ NPC

Proof:

I Clearly ANP ∈ NP.

I Let L ∈ NP, let V be a verifier for L and let p ∈ poly be a bound on the
running time of V (i.e., V(x , ·) halts within p(|x |) steps, for every x ∈ Σ∗).

I Define f (x) = 〈V, x ,1p(|x|)〉.
I f is poly-time computable

I x ∈ L⇐⇒ f (x) ∈ ANP.

♣
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Finding additional NP-complete languages

Theorem 37
Assume that

1. B ∈ NP

2. A ∈ NPC and A ≤P B

then B ∈ NPC.

Proof: Home exercise . . .♣

We would like to find L ∈ NPC that is “natural" and “easy" to reduce to.
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Section 6

Satisfiability
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Boolean variables

I A Boolean variable assumes values

I TRUE (written 1), and FALSE (written 0).

I Boolean operations:

I and: ∧
I or: ∨
I not: ¬

I Examples:

0 ∧ 1 = 0
0 ∨ 1 = 1

0 = 1
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Boolean formulas and SAT

A Boolean formula is an expression involving Boolean variables and
operations.

φ = (x ∧ y) ∨ (x ∧ z)

Definition 38 (satisfiable formula)

A formula is satisfiable, if some Boolean assignment to its variables, makes
the formula evaluate to 1.

The formula φ = (x ∧ y) ∨ (x ∧ z) is satisfiable by the assignment

x = 0
y = 1
z = 0

The language of satisfied formulas:

SAT = {〈φ〉 : φ is a satisfiable Boolean formula}
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SAT ∈ NPC

SAT = {〈φ〉 : φ is satisfiable Boolean formula}

Theorem 39 (Cook-Levin (early 70s))

SAT ∈ NPC.

I The “most important" NP-complete language.

I It is easy to see that SAT ∈ NP
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Section 7

Proving SAT ∈ NPC
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The proof, high level

I Let L ∈ NP and let N = (Q,Σ, Γ, δ,q0,qa,qr ) be an t-time NTM that
accepts L, for some t ∈ poly.

I Given the string w ∈ {0,1}∗, construct in time O(p(|w |)2) a formula φN,w
such that: φN,w ∈ SAT iff N accepts w .

I Hence, the mapping w 7→ φN,w is a poly-time reduction from L to SAT,
establishing L ≤P SAT.

I In the following fix L, N and w ∈ {0,1}n.

I We assume wlg. that M(w) halts after exactly t(n) steps.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 42 / 52



The configuration-history Tableau

Consider the t(n)-by-t(n) Tableau that describes a possible accepting
computation history of N on input w .

cell[1,1]

cell[1,t(n)]

q 0 0 10 0 . . .

1 2 3 . . . t(n)

0 0

0

1

I First row represents initial configuration of N on input w .
I i ’th row represents the i-th configuration in a possible computation of N

on input w .
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The formula φN,w

I Let S = Q ∪ Γ (the alphabet of the configuration history).

I φN,w uses Boolean variables {xi,j,s}i,j∈[t(n)],s∈S.

φN,w = φCell(N) ∧ φStart(w) ∧ φMove(N) ∧ φAccept(N)

I Given an assignment z for φN,w , let T (z) be the t(n)× t(n) Tableau,
defined by setting the j-th cell in i ’th configuration to s, if xi,j,s = 1 in z.

(T (z) is undefined, if xi,j,s′ = xi,j,s = 1 for some s 6= s′ ∈ S, or xi,j,s = 0
for all s ∈ S).

I T (z) will represents a (possible) accepting execution of N(w), iff z is an
a satisfying assignment for φN,w .
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The formula φCell(N)

φCell(N) guarantees that the variables encode legal configurations:

I Each cell (i , j) has at least one letter:
∨

s∈S xi,j,s.

I No cell (i , j) has two or more letters
∧

s 6=s′∈S xi,j,s ∧ xi,j,s′ .

Together:

φCell(N) =
∧
i,j

(∨
s∈S

xi,j,s

)
∧

 ∧
s 6=s′∈S

xi,j,s ∧ xi,j,s′



Claim 40
If an assignment z satisfies φCell(N), then T (z) is defined.
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The formula φStart(w)

φStart(w) guarantees that the first row encodes the initial configuration (i.e.,
q0w).

φ start(w) =x1,1,q0 ∧ x1,2,w1 ∧ x1,3,w2 ∧ . . . ∧ x1,n+1,wn

∧ x1,n+2, ∧ . . . ∧ x1,t(n),

Claim 41
If z satisfies φCell(N) ∧ φStart(w), then the first line of T (z) is q0w t . . .t︸ ︷︷ ︸

t(n)−n−1

.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 46 / 52



The formula φMove(N)

φMove(N) is the “heart” of φN,w . To construct it, we employ locality of
computations.

Observation: Configuration C, with head location h, yields configuration C′

(with respect to δ), if the following holds.

I C′i =Ci for any i /∈ {h − 1,h,h + 1}
I C′h−1,h,h+1 is consistent (with respect to δ) with Ch−1,h,h+1.

We check that each configuration in T (z) yields the next one, by inducing
local “checks” on z.
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φMove(N) – Rectangles

I A rectangle is a 2× 3 configuration sub-table.

I Assume that δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2, c,L), (q2,a,R)}.
I (some) Legal 2× 3 rectangles:

a q1 b a q1 b a a q1
q2 a c a a q2 a a b

a b a b b b a a b
a b q2 c b b a a b

I (some) Illegal 2× 3 rectangles:

a b a a q1 b b q1 b
a a a q1 a a q2 b q2

I There is a constant number of legal rectangles (determined by δ).

I Denote this set by C = C(δ).
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φMove(N) – Characterizing legal rectangles

The formula “verifies" that all 2× 3 rectangles in the Tableau are in the list C:

1. a b c
∗ b ∗

2.
a q b
q’ a b’

a q b
a b’ q’

(L,q′,b′) ∈ δ(q,b) (R,q′,b′) ∈ δ(q,b)

3. q ∗ ∗
∗ ∗ ∗

∗ ∗ q
∗ ∗ ∗

• Some rectangles in C are clearly illegal.

• For rectangles on the left-most and right-most side of Tableau, we use
slightly different first type rectangles.
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φMove(N)– formal definition

I For each entry (i , j) ∈ [t(n)]× [t(n)] and c ∈ C, let φMove,i,j,c be the
formula taking the value 1 iff the 2× 3 table of cells in the Tableau whose
upper-left corner is (i , j) is c.

For instance, for entry (1,1) and c =
a q1 b
q2 a d ,

let φMove,1,1,c = x1,1,a ∧ x1,2,q1 ∧ x1,3,b ∧ x2,1,q2 ∧ x2,2,a ∧ x2,3,d

I Finally, let φMove(N) =
∧

(i,j)
∨

c∈C φMove,i,j,c .

Claim 42
If z satisfies φCell(N) ∧ φStart(w) ∧ φMove(N), then T (z) is a possible configuration
history of N(w).

Proof: By induction on the row index. Base case: z satisfies φCell(N) ∧φStart(w).
Assume configuration defined in rows 1, . . . , i is possible and head is in cell j .
The configuration of rows 1, . . . , i + 1 is also possible: Cells of indices not in
{j − 1, j , j + 1}, by first type of rectangles in C. Other cells, by second type
rectangles in C. Q: Why de we need the third type of cells?
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The formula φAccept(N)

φAccept(N) guarantees that some row encodes an accepting configuration ( i.e.,
uqav ):

φAccept(N) =
∨
i,j

xi,j,qa

Claim 43
If z satisfies φN,w = φCell(N) ∧ φStart(w) ∧ φMove(N) ∧ φAccept(N), then T (z) is an
accepting configuration history of N(w).
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Correctness of reduction

I The transformation w 7→ φN,w is computable in time O(n2c).

I An assignment satisfying φN,w , corresponds to an accepting
configuration history of N(w).

I An accepting configuration history of N(w) corresponds to an
assignment satisfying φN,w . (?)

Therefore, N accepts w iff φN,w ∈ SAT. ♣.

I For complete details, consult Sipser chapter 7.4.
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