Computational Models — Lecture 12¹

Handout Mode

Iftach Haitner.

Tel Aviv University.

January 16, 2017

¹ Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

Talk Outline

- Reminder deterministic and nondeterministic time classes
- ► The class *NP*
- Verifiability
- Additional NP languages
- ► The class *co-NP*
- \mathcal{P} Verses \mathcal{NP}
- NP-completeness
- Satisfiability
- Cook-Levin theorem
- Sipser's book, 7.4–7.5

Reminder — Deterministic time

Definition 1 (deterministic Time)

Let *M* be a deterministic TM, and let $t : \mathbb{N} \mapsto \mathbb{N}$. We say that *M* runs in time t(n), if For every input *x* of length *n*, the number of steps that M(x) uses is at most t(n).

Question 2

What is a "step"?

Definition 3 (DTIME)

```
For t: \mathbb{N} \mapsto \mathbb{N}, let DTIME(t(n)) = \{L \subseteq \Sigma^*: L \text{ is decided by an } O(t(n)) \text{-time single tape TM} \}
```

Note that t(n) running time, is also required for strings not in L.

Non-deterministic time

Definition 4 (nondeterministic time)

A non-deterministic TM *N* runs in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if for every input *x* of length *n*, the maximum number of steps that *N* uses on any branch of its computation tree on *x*, is at most f(n).

Notice that also non-accepting branches must reject within f(n) many steps.

TAKE NOTE: the depth of the tree, not the size of the tree!!!

Part I The Class NP

The Class \mathcal{NP}

Definition 5 (NTIME) For $t: \mathbb{N} \mapsto \mathbb{N}$, let NTIME $(t(n)) = \{L \subseteq \Sigma^*: L \text{ is decided by an } O(t(n))\text{-time single tape NTM}\}$

 \mathcal{NP} is the set of languages decidable in polynomial time on non-deterministic TMs.

```
Definition 6 (\mathcal{NP})
\mathcal{NP} = \bigcup_{c \ge 0} \mathsf{NTIME}(n^c)
```

The class NP is important because:

- Insensitive to choice of reasonable non-deterministic computational model.
- Roughly corresponds to problems whose positive solutions are efficiently verified.

Are language in \mathcal{NP} decidable in polynomial time?

We don't know!

but what we do know is this:

Large class of fundamental languages in *NP* that are "the hardest" (i.e., if ONE is efficiently solvable then ALL are efficiently solvable)

Hamiltonian path

A Hamiltonian path in a directed G visits each node exactly once.

HAMPATH = { $\langle G, s, t \rangle$: *G* has Hamiltonian path from *s* to *t*}

Question 7

How hard is it to decide HAMPATH?

Easy to obtain exponential time algorithm:

- Generate each potential path
- Check whether it is Hamiltonian

$\textbf{HAMPATH} \in \mathcal{NP}$

Here is an NTM that decides HAMPATH in polynomial time.

Algorithm 8 (N)

On input $\langle G = (V, E), s, t \rangle$,

1. Guess a list of numbers p_1, \ldots, p_m , where m = |V| and $1 \le p_i \le m$.

2. Accept if all the following hold (otherwise Reject):

- No repetitions in list
- $p_1 = s$ and $p_m = t$.
- $(p_i, p_{i+1}) \in E$ for every $1 \le i \le m-1$

How does a TM guess a string?

Claim 9

N runs in polynomial time

Verifiability of HAMPATH

This problem has one very interesting feature: polynomial verifiability:

We don't know a fast way to find a Hamiltonian path, but we can check whether a given path is Hamiltonian in polynomial time.

Verifying correctness of a path is much easier than determining whether one exists

Section 1 Verifiability

Verifiability

Definition 10 (verifier)

A deterministic algorithm V is a verifier for a language L, if

- $x \in L \implies \exists c \in \{0,1\}^* \text{ s.t. } V(x,c) = 1.$
- $x \notin L \implies \nexists c \in \Sigma^* \text{ s.t. } V(x, c) = 1.$
- The verifier uses the additional information *c* to verify $x \in L$.
- If V accepts (x, c) (i.e., outputs 1), the string c is called a certificate (also known as, proof or witness) for x.
- ► A polynomial verifier runs in polynomial time in |x| (i.e., in the length of its left-hand-side input parameter).
- A language L is polynomially verifiable, if it has a polynomial verifier.
- ► A certificate for (G, s, t) ∈ HAMPATH is simply the Hamiltonian path from s to t.

Easy to verify in time polynomial in $|\langle G, s, t \rangle|$ whether given path is Hamiltonian.

Not all languages are known to be polynomially verifiable.

NP and Verifiability

Theorem 11

A language is in \mathcal{NP} iff it has a polynomial time verifier.

Proof's idea:

- ► The NTM emulates the verifier by guessing the certificate.
- Verifier emulates NTM by using accepting branch as certificate.

 $\textbf{Verifiability} \implies \mathcal{NP}$

Claim 12

If L has a poly-time verifier, then it is decided by some polynomial-time NTM.

Proof: Let V be poly-time verifier for L of running time p(n) for some $p \in poly$.

Algorithm 13 (N)

On input $x \in \{0, 1\}^n$:

- **1.** Guess a string *c* of length p(n).
- **2.** Emulate V on $\langle x, c \rangle$
- 3. Accept if V accepts; Otherwise Reject.

Why is it suffices to guess a string of length p(n)?

$\mathcal{NP} \implies$ Verifiability

Claim 14

If L is decided by a polynomial-time NTM N, then L has a poly-time verifier.

Proof: Assume for simplicity that at each step of N, the number of possible non-deterministic moves is at most two.

Algorithm 15 (V)

On input (*x*, *c*):

1. Emulate N(x), treating each symbol of *c* as a description of the non-deterministic choice in each step of *N*.

2. Accept if this branch accepts; Otherwise Reject.

Without the simplifying assumption?

Section 2

A few more NP languages

CLIQUE

A clique in a graph is a subgraph where every two nodes are connected by an edge.

A *k*-clique is a clique of size *k*.

CLIQUE cont.

 $\mathsf{CLIQUE} = \{ \langle G, k \rangle : G \text{ is an undirected graph with a } k \text{-clique} \}$

Theorem 17 CLIQUE $\in \mathcal{NP}$

Proof's idea: The clique is the certificate.

Algorithm 18 (V)

On input $(\langle G, k \rangle, c)$ Accept if c is a k-clique subgraph of G; Otherwise Reject.

Independent set

An independent set in a graph is a set of vertexes, no two of which are linked by an edge.

A *k*-IS is an independent set of size *k*.

Question 19 What is the largest *k*-IS in the figure?

Independent set cont.

IND-SET = { $\langle G, k \rangle$: G contains an independent set of size k}

Theorem 20 IND-SET $\in \mathcal{NP}$

Proof's idea: The independent set is the certificate.

Algorithm 21 (V) On input $(\langle G, k \rangle, c)$ Accept if c is a k-IS of G (no edges between nodes in c, and |c| = k); Otherwise Reject.

Section 3

 $\textit{co-}\mathcal{NP}$

The class $co-\mathcal{NP}$

 $\overline{\text{CLIQUE}} = \{ \langle G, k \rangle : G \text{ is an undirected graph with no } k \text{-clique} \} \text{ seems not to be member of } \mathcal{NP}.$

It seems harder to efficiently verify that something does not exist than to efficiently verify that something does exist.

Definition 22 (co-NP)

 $\textit{co-}\mathcal{NP} = \{ \mathsf{L} \colon \overline{\mathsf{L}} \in \mathcal{NP} \}.$

But.. we are not sure...So far, no one knows if co-NP is distinct from NP.

Claim 23

 $\mathcal{P} \subseteq \textit{co-NP}.$

 $\text{Proof? } \mathsf{L} \in \mathcal{P} \implies \overline{\mathsf{L}} \in \mathcal{P} \implies \overline{\mathsf{L}} \in \mathcal{NP} \implies \mathsf{L} \in \textit{co-NP}.$

Is Primality in \mathcal{NP} ? co- \mathcal{NP} ?

How would you prove that a number is prime without trying all divisors? Actually it is in P! (not obvious at all)

Section 4

P vs. NP

$\mathcal P$ vs. $\mathcal N\mathcal P$

The question $\mathcal{P} \stackrel{?}{=} \mathcal{NP}$ is one of the great unsolved mysteries in contemporary mathematics.

\mathcal{P} vs. \mathcal{NP}

- Most computer scientists believe the two classes are not equal
- Most bogus proofs show them equal (?)
- One of 7 Clay Millenium Prize problems (1,000,000\$!)
- "Computer Science's greatest intellectual export" (Papadimitriou 2007)

\mathcal{P} Vs. \mathcal{NP} , cont.

If \mathcal{P} differs from \mathcal{NP} , then the distinction between \mathcal{P} and $\mathcal{NP} \setminus \mathcal{P}$ is meaningful and important.

- ► languages in *P* are tractable
- languages in $\mathcal{NP} \setminus \mathcal{P}$ are intractable

Until we can prove that $\mathcal{P} \neq \mathcal{NP}$, there is no hope of proving that a specific language lies in $\mathcal{NP} \setminus \mathcal{P}$.

Nevertheless, we can prove statements of the form

If $A \in \mathcal{NP} \setminus \mathcal{P}$, then $B \in \mathcal{NP} \setminus \mathcal{P}$.

Section 5

NP Completeness

NP Completeness

The class of NP-complete languages are

- "hardest" languages in NP
- If any NP-complete $L \in P$, then $\mathcal{NP} = \mathcal{P}$.

Question 24

Are there NP-complete languages?

Polynomial-time reducibility

Definition 25 (poly-time computable functions)

A function $f: \Sigma^* \mapsto \Sigma^*$ is polynomial-time computable, if there is a poly-time deterministic TM that

- starts with input w, and
- halts with f(w) on tape.

Definition 26 (poly-time reduction)

A polynomial-time computable $f: \Sigma^* \mapsto \Sigma^*$ is a poly-time reduction from language A to B, if $x \in A \iff f(x) \in B$ for every $x \in \Sigma^*$. Is such a reduction from A to B exists, we say that A is poly-time mapping reducible to B, denoted $A \leq_P B$.

The mapping *f* efficiently converts questions about membership in A to membership in B.

Example: CLIQUE \leq_P IND-SET

Proof:

Definition 27

The complement of a graph G = (V, E) is a graph $G^c = (V, E^c)$, where $E^c = \{(v_1, v_2) : v_1, v_2 \in V \text{ and } (v_1, v_2) \notin E\}.$

The reduction f(G, k) from CLIQUE to IND-SET simply computes the complement of the graph and outputs (G^c, k) .

f satisfies:

- U is a clique in G \iff U is a independent set in G^c .
- computable in polynomial time!

÷

Remark 28

Same reduction shows that IND-SET \leq_P CLIQUE

Reductions to ${\mathcal{P}}$

Theorem 29

If $A \leq_{P} B$ and $B \in \mathcal{P}$ then $A \in \mathcal{P}$.

Proof:

- ► Let *f* the reduction from A to B, computed by TM M_f . On input *x*, the TM M_f makes at most $c_f \cdot |x|^{a_f}$ steps.
- ► Let M_B be the poly-time decider for B. On input y, the TM M_B makes at most c_B · |y|^{a_B} steps.

Algorithm 30 (Decider M_A for A)

On input x, return $M_B(f(x))$

M_A decides A

► Since $|f(x)| \le c_f |x|^{a_f}$, running time of $M_B(x)$, is at most $c_B \cdot (c_f \cdot |x|^{a_f})^{a_B} = (c_B \cdot c_f^{a_B}) \cdot |x|^{a_f \cdot a_B} \in \text{poly}(|x|)$ Hence, $A \in \mathcal{P}$

What $A \leq_P B$ tells us about B?

Question 31

Assume that $\{0^n 1^n : n \ge 0\} \le_P L$. Does it yield that $L \in \mathcal{P}$?

Answer: No. (Reduction in the wrong direction!)

Let $L = H_{TM,\varepsilon}$ and define $f(x) = \begin{cases} M_{stop}, & x \in \{0^n 1^n : n \in \mathbb{N}\}\\ M_{no-stop}, & \text{otherwise.} \end{cases}$

 $A \leq_P B$ does tell us that B is "at least as hard" as A.

NP completeness, formal definition

```
Definition 32 (NP-complete)
```

A language B is NP-complete, if

- $B \in \mathcal{NP}$, and
- Every $A \in \mathcal{NP}$ is poly-time reducible to B (i.e., $A \leq_P B$)

Let \mathcal{NPC} denote the class of all \mathcal{NP} -complete languages.

Compare to

Definition 33 (RE-complete)

A language B is RE-complete, if

- $B \in \mathcal{RE}$, and
- Every $A \in \mathcal{RE}$ is mapping reducible to B.

Why NP completeness?

Theorem 34

If $B \in \mathcal{NPC}$ and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

Proof: Immediately follows by Thm 29. 🐥

To show $\mathcal{P} = \mathcal{NP}$ (and make an instant fortune, see <u>www.claymath.org/millennium/P_vs_NP/</u>), suffices to find a polynomial-time algorithm for any NP-complete problem.

Question 35

Is \mathcal{NPC} empty?

\mathcal{NPC} is not empty

 $\mathsf{A}_{\mathsf{NP}} = \{ \langle \mathsf{M}, x, 1^n \rangle \colon \mathsf{M} \text{ is a } \mathsf{TM} \land \exists c \in \Sigma^* \text{ s.t. } \mathsf{M}(x, c) \text{ accepts within } n \text{ steps} \}.$

Theorem 36

 $A_{\mathsf{NP}} \in \mathcal{NPC}$

Proof:

- Clearly $A_{NP} \in \mathcal{NP}$.
- Let L ∈ NP, let V be a verifier for L and let p ∈ poly be a bound on the running time of V (i.e., V(x, ·) halts within p(|x|) steps, for every x ∈ Σ*).
- Define $f(x) = \langle V, x, 1^{p(|x|)} \rangle$.
- f is poly-time computable
- ► $x \in \mathsf{L} \iff f(x) \in \mathsf{A}_{\mathsf{NP}}.$

Finding additional NP-complete languages

Theorem 37	
Assume that	
1. $B \in \mathcal{NP}$	
2. $A \in \mathcal{NPC}$ and $A \leq_P B$	
then $B \in \mathcal{NPC}$.	

Proof: Home exercise ... 🐥

We would like to find $L \in \mathcal{NPC}$ that is "natural" and "easy" to reduce to.

Section 6 Satisfiability

Boolean variables

- A Boolean variable assumes values
 - TRUE (written 1), and FALSE (written 0).
- Boolean operations:
 - ► and: ∧
 - ▶ or: ∨
 - not: ¬
- Examples:

 $\begin{array}{rrrrr} 0 \wedge 1 & = & 0 \\ 0 \vee 1 & = & 1 \\ \overline{0} & = & 1 \end{array}$

Boolean formulas and SAT

A Boolean formula is an expression involving Boolean variables and operations.

 $\phi = (\overline{x} \land y) \lor (x \land \overline{z})$

Definition 38 (satisfiable formula)

A formula is satisfiable, if some Boolean assignment to its variables, makes the formula evaluate to 1.

The formula $\phi = (\overline{x} \land y) \lor (x \land \overline{z})$ is satisfiable by the assignment

The language of satisfied formulas:

SAT = { $\langle \phi \rangle$: ϕ is a satisfiable Boolean formula}

SAT = { $\langle \phi \rangle$: ϕ is satisfiable Boolean formula}

Theorem 39 (Cook-Levin (early 70s))SAT
$$\in \mathcal{NPC}$$
.

- ► The "most important" *NP*-complete language.
- It is easy to see that $SAT \in \mathcal{NP}$

Section 7 **Proving SAT** $\in \mathcal{NPC}$

The proof, high level

- Let L ∈ NP and let N = (Q, Σ, Γ, δ, q₀, q_a, q_r) be an *t*-time NTM that accepts L, for some t ∈ poly.
- Given the string w ∈ {0,1}*, construct in time O(p(|w|)²) a formula φ_{N,w} such that: φ_{N,w} ∈ SAT iff N accepts w.
- ► Hence, the mapping $w \mapsto \phi_{N,w}$ is a poly-time reduction from L to SAT, establishing L \leq_P SAT.
- ▶ In the following fix L, N and $w \in \{0, 1\}^n$.
- We assume wlg. that M(w) halts after exactly t(n) steps.

The configuration-history Tableau

Consider the t(n)-by-t(n) Tableau that describes a possible accepting computation history of N on input w.

- First row represents initial configuration of N on input w.
- i'th row represents the i-th configuration in a possible computation of N on input w.

The formula $\phi_{N,w}$

- Let $S = Q \cup \Gamma$ (the alphabet of the configuration history).
- $\phi_{N,w}$ uses Boolean variables $\{x_{i,j,s}\}_{i,j\in[t(n)],s\in S}$.

 $\phi_{N,w} = \phi_{\text{Cell}(N)} \land \phi_{\text{Start}(w)} \land \phi_{\text{Move}(N)} \land \phi_{\text{Accept}(N)}$

- Given an assignment z for φ_{N,w}, let T(z) be the t(n) × t(n) Tableau, defined by setting the *j*-th cell in *i*'th configuration to *s*, if x_{i,j,s} = 1 in z.
 (T(z) is undefined, if x_{i,j,s'} = x_{i,j,s} = 1 for some s ≠ s' ∈ S, or x_{i,j,s} = 0 for all s ∈ S).
- ► T(z) will represents a (possible) accepting execution of N(w), iff z is an a satisfying assignment for φ_{N,w}.

The formula $\phi_{\text{Cell}(N)}$

 $\phi_{\text{Cell}(N)}$ guarantees that the variables encode legal configurations:

- ► Each cell (i, j) has at least one letter: $\bigvee_{s \in S} x_{i,j,s}$.
- ► No cell (i, j) has two or more letters $\bigwedge_{s \neq s' \in S} \overline{x_{i,j,s} \land x_{i,j,s'}}$.

Together:

$$\phi_{\mathsf{Cell}(N)} = \bigwedge_{i,j} \left[\left(\bigvee_{s \in S} \mathbf{x}_{i,j,s} \right) \land \left(\bigwedge_{s \neq s' \in S} \overline{\mathbf{x}_{i,j,s} \land \mathbf{x}_{i,j,s'}} \right) \right]$$

Claim 40

If an assignment z satisfies $\phi_{\text{Cell}(N)}$, then T(z) is defined.

The formula $\phi_{\text{Start}(w)}$

 $\phi_{\text{Start}(w)}$ guarantees that the first row encodes the initial configuration (i.e., $q_0 w$).

$$\phi_{\text{start}(w)} = x_{1,1,q_0} \wedge x_{1,2,w_1} \wedge x_{1,3,w_2} \wedge \ldots \wedge x_{1,n+1,w_n}$$
$$\wedge x_{1,n+2,\ldots} \wedge \ldots \wedge x_{1,t(n),\ldots}$$

Claim 41

If z satisfies $\phi_{\text{Cell}(N)} \land \phi_{\text{Start}(w)}$, then the first line of T(z) is $q_0 w \bigsqcup_{t(n)=n-1}$.

The formula $\phi_{Move(N)}$

 $\phi_{\text{Move}(N)}$ is the "heart" of $\phi_{N,w}$. To construct it, we employ locality of computations.

Observation: Configuration *C*, with head location *h*, yields configuration *C'* (with respect to δ), if the following holds.

- $C'_i = C_i$ for any $i \notin \{h 1, h, h + 1\}$
- $C'_{h-1,h,h+1}$ is consistent (with respect to δ) with $C_{h-1,h,h+1}$.

We check that each configuration in T(z) yields the next one, by inducing local "checks" on z.

$\phi_{\text{Move}(N)}$ – Rectangles

- A rectangle is a 2×3 configuration sub-table.
- Assume that $\delta(q_1, a) = \{(q_1, b, R)\}$ and $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}$.

a | a | b

(some) Legal 2 × 3 rectangles:

b

а

 q_2

a | b

а

а	а	q 1
а	а	b

а

b

		~	u
С	b	b	а

b

 q_2

(some) Illegal 2 × 3 rectangles:

а	b	а	а	q 1	b	b	q 1	b
а	а	а	q 1	а	а	q 2	b	q 2

- There is a constant number of legal rectangles (determined by δ).
- Denote this set by $C = C(\delta)$.

$\phi_{\text{Move}(N)}$ – Characterizing legal rectangles

The formula "verifies" that all 2×3 rectangles in the Tableau are in the list C:

- Some rectangles in C are clearly illegal.
- For rectangles on the left-most and right-most side of Tableau, we use slightly different first type rectangles.

$\phi_{\text{Move}(N)}$ – formal definition

For each entry (i, j) ∈ [t(n)] × [t(n)] and c ∈ C, let φ_{Move,i,j,c} be the formula taking the value 1 iff the 2 × 3 table of cells in the Tableau whose upper-left corner is (i, j) is c.

For instance, for entry (1, 1) and $c = \begin{vmatrix} a & q_1 & b \\ \hline q_2 & a & d \end{vmatrix}$,

 $\mathsf{let} \ \phi_{\mathsf{Move},1,1,c} = x_{1,1,a} \land x_{1,2,q_1} \land x_{1,3,b} \land x_{2,1,q_2} \land x_{2,2,a} \land x_{2,3,d}$

• Finally, let $\phi_{\text{Move}(N)} = \bigwedge_{(i,j)} \bigvee_{c \in C} \phi_{\text{Move},i,j,c}$.

Claim 42

If z satisfies $\phi_{\text{Cell}(N)} \land \phi_{\text{Start}(w)} \land \phi_{\text{Move}(N)}$, then T(z) is a possible configuration history of N(w).

Proof: By induction on the row index. Base case: *z* satisfies $\phi_{\text{Cell}(N)} \land \phi_{\text{Start}(w)}$. Assume configuration defined in rows 1,...,*i* is possible and head is in cell *j*. The configuration of rows 1,...,*i* + 1 is also possible: Cells of indices not in $\{j - 1, j, j + 1\}$, by first type of rectangles in *C*. Other cells, by second type rectangles in *C*. Q: Why de we need the third type of cells?

The formula $\phi_{Accept(N)}$

 $\phi_{\text{Accept}(N)}$ guarantees that some row encodes an accepting configuration (i.e., $uq_a v$):

$$\phi_{\mathsf{Accept}(N)} = \bigvee_{i,j} x_{i,j,q_a}$$

Claim 43

If z satisfies $\phi_{N,w} = \phi_{\text{Cell}(N)} \land \phi_{\text{Start}(w)} \land \phi_{\text{Move}(N)} \land \phi_{\text{Accept}(N)}$, then T(z) is an accepting configuration history of N(w).

Correctness of reduction

- ► The transformation $w \mapsto \phi_{N,w}$ is computable in time $O(n^{2c})$.
- ► An assignment satisfying φ_{N,w}, corresponds to an accepting configuration history of N(w).
- ► An accepting configuration history of N(w) corresponds to an assignment satisfying φ_{N,w}. (?)

Therefore, *N* accepts *w* iff $\phi_{N,w} \in SAT$.

► For complete details, consult Sipser chapter 7.4.