
Computational Models — Lecture 121

Handout Mode

Iftach Haitner.

Tel Aviv University.

January 16, 2017

1
Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 1 / 52

Talk Outline

I Reminder – deterministic and nondeterministic time classes

I The class NP
I Verifiability

I Additional NP languages

I The class co-NP
I P Verses NP
I NP-completeness

I Satisfiability

I Cook-Levin theorem

Sipser’s book, 7.4–7.5

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 2 / 52

Reminder — Deterministic time

Definition 1 (deterministic Time)
Let M be a deterministic TM, and let t : N 7→ N. We say that M runs in time
t(n), if For every input x of length n, the number of steps that M(x) uses is at
most t(n).

Question 2
What is a “step"?

Definition 3 (DTIME)

For t : N 7→ N, let DTIME(t(n)) =
{L ⊆ Σ∗ : L is decided by an O(t(n))-time single tape TM}

Note that t(n) running time, is also required for strings not in L.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 3 / 52

Non-deterministic time

Definition 4 (nondeterministic time)

A non-deterministic TM N runs in time f (n), where f : N 7→ N, if for every input
x of length n, the maximum number of steps that N uses on any branch of its
computation tree on x , is at most f (n).

Notice that also non-accepting branches must reject within f (n) many steps.

f(n)

deterministic nondeterministic

f(n)

TAKE NOTE: the depth of the tree, not the size of the tree!!!

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 4 / 52

Part I

The Class NP

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 5 / 52

The Class NP

Definition 5 (NTIME)

For t : N 7→ N, let NTIME(t(n)) =
{L ⊆ Σ∗ : L is decided by an O(t(n))-time single tape NTM}

NP is the set of languages decidable in polynomial time on non-deterministic
TMs.

Definition 6 (NP)

NP =
⋃

c≥0 NTIME(nc)

The class NP is important because:

I Insensitive to choice of reasonable non-deterministic computational
model.

I Roughly corresponds to problems whose positive solutions are efficiently
verified.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 6 / 52

Are language in NP decidable in polynomial time?

We don’t know!

but what we do know is this:

Large class of fundamental languages in NP that are “the
hardest”

(i.e., if ONE is efficiently solvable then ALL are efficiently solvable)

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 7 / 52

Hamiltonian path

A Hamiltonian path in a directed G visits each node exactly once.

HAMPATH = {〈G, s, t〉 : G has Hamiltonian path from s to t}

Question 7
How hard is it to decide HAMPATH?

Easy to obtain exponential time algorithm:

I Generate each potential path

I Check whether it is Hamiltonian

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 8 / 52

HAMPATH ∈ NP
Here is an NTM that decides HAMPATH in polynomial time.

Algorithm 8 (N)

On input 〈G = (V ,E), s, t〉,

1. Guess a list of numbers p1, . . . ,pm, where m = |V | and 1 ≤ pi ≤ m.

2. Accept if all the following hold (otherwise Reject):

I No repetitions in list
I p1 = s and pm = t .
I (pi ,pi+1) ∈ E for every 1 ≤ i ≤ m − 1

I How does a TM guess a string?

Claim 9
N runs in polynomial time

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 9 / 52

Verifiability of HAMPATH

This problem has one very interesting feature: polynomial verifiability:

We don’t know a fast way to find a Hamiltonian path, but we can
check whether a given path is Hamiltonian in polynomial time.

Verifying correctness of a path is much easier than determining whether one
exists

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 10 / 52

Section 1

Verifiability

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 11 / 52

Verifiability

Definition 10 (verifier)

A deterministic algorithm V is a verifier for a language L, if

I x ∈ L =⇒ ∃c ∈ {0,1}∗ s.t. V(x , c) = 1.

I x /∈ L =⇒ @c ∈ Σ∗ s.t. V(x , c) = 1.

I The verifier uses the additional information c to verify x ∈ L.
I If V accepts (x , c) (i.e., outputs 1), the string c is called a certificate (also

known as, proof or witness) for x .
I A polynomial verifier runs in polynomial time in |x | (i.e., in the length of

its left-hand-side input parameter).
I A language L is polynomially verifiable, if it has a polynomial verifier.
I A certificate for 〈G, s, t〉 ∈ HAMPATH is simply the Hamiltonian path from

s to t .
Easy to verify in time polynomial in |〈G, s, t〉| whether given path is
Hamiltonian.

I Not all languages are known to be polynomially verifiable.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 12 / 52

NP and Verifiability

Theorem 11
A language is in NP iff it has a polynomial time verifier.

Proof’s idea:

I The NTM emulates the verifier by guessing the certificate.

I Verifier emulates NTM by using accepting branch as certificate.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 13 / 52

Verifiability =⇒ NP

Claim 12
If L has a poly-time verifier, then it is decided by some polynomial-time NTM.

Proof: Let V be poly-time verifier for L of running time p(n) for some p ∈ poly.

Algorithm 13 (N)

On input x ∈ {0,1}n:

1. Guess a string c of length p(n).

2. Emulate V on 〈x , c〉

3. Accept if V accepts; Otherwise Reject.

♣
I Why is it suffices to guess a string of length p(n)?

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 14 / 52

NP =⇒ Verifiability

Claim 14
If L is decided by a polynomial-time NTM N, then L has a poly-time verifier.

Proof: Assume for simplicity that at each step of N, the number of possible
non-deterministic moves is at most two.

Algorithm 15 (V)

On input (x , c):

1. Emulate N(x), treating each symbol of c as a description of the
non-deterministic choice in each step of N.

2. Accept if this branch accepts; Otherwise Reject.

♣
Without the simplifying assumption?

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 15 / 52

Section 2

A few more NP languages

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 16 / 52

CLIQUE

A clique in a graph is a subgraph where every two nodes are connected by an
edge.
A k -clique is a clique of size k .

Question 16
What is the largest k -clique in the figure?

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 17 / 52

CLIQUE cont.

CLIQUE = {〈G, k〉 : G is an undirected graph with a k -clique}

Theorem 17
CLIQUE ∈ NP

Proof’s idea: The clique is the certificate.

Algorithm 18 (V)

On input (〈G, k〉, c)
Accept if c is a k -clique subgraph of G;
Otherwise Reject.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 18 / 52

Independent set

An independent set in a graph is a set of vertexes, no two of which are linked
by an edge.
A k -IS is an independent set of size k .

Question 19
What is the largest k -IS in the figure?

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 19 / 52

Independent set cont.

IND-SET = {〈G, k〉 : G contains an independent set of size k}

Theorem 20
IND-SET ∈ NP

Proof’s idea: The independent set is the certificate.

Algorithm 21 (V)

On input (〈G, k〉, c)
Accept if c is a k -IS of G (no edges between nodes in c, and |c| = k);
Otherwise Reject.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 20 / 52

Section 3

co-NP

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 21 / 52

The class co-NP
CLIQUE = {〈G, k〉 : G is an undirected graph with no k -clique} seems not to
be member of NP.
It seems harder to efficiently verify that something does not exist than to
efficiently verify that something does exist.

Definition 22 (co-NP)

co-NP = {L : L ∈ NP}.

But.. we are not sure...So far, no one knows if co-NP is distinct from NP.

Claim 23
P ⊆ co-NP.

Proof? L ∈ P =⇒ L ∈ P =⇒ L ∈ NP =⇒ L ∈ co-NP.

Is Primality in NP? co-NP?
How would you prove that a number is prime without trying all divisors?
Actually it is in P! (not obvious at all)

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 22 / 52

Section 4

P vs. NP

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 23 / 52

P vs. NP

NP

P P=NP

The question P ?
= NP is one of the great unsolved mysteries in

contemporary mathematics.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 24 / 52

P vs. NP

I Most computer scientists believe the two classes are not equal

I Most bogus proofs show them equal (?)

I One of 7 Clay Millenium Prize problems (1,000,000$!)

I “Computer Science’s greatest intellectual export” (Papadimitriou 2007)

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 25 / 52

P Vs. NP, cont.

If P differs from NP, then the distinction between P and NP \ P is
meaningful and important.

I languages in P are tractable

I languages in NP \ P are intractable

Until we can prove that P 6= NP, there is no hope of proving that a specific
language lies in NP \ P.

Nevertheless, we can prove statements of the form

If A ∈ NP \ P, then B ∈ NP \ P.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 26 / 52

Section 5

NP Completeness

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 27 / 52

NP Completeness

P

NP

NP-
complete

The class of NP-complete languages are

I “hardest” languages in NP
I If any NP-complete L ∈ P, then NP = P.

Question 24
Are there NP-complete languages?

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 28 / 52

Polynomial-time reducibility

Definition 25 (poly-time computable functions)

A function f : Σ∗ 7→ Σ∗ is polynomial-time computable, if there is a poly-time
deterministic TM that

I starts with input w , and

I halts with f (w) on tape.

Definition 26 (poly-time reduction)

A polynomial-time computable f : Σ∗ 7→ Σ∗ is a poly-time reduction from
language A to B, if x ∈ A⇐⇒ f (x) ∈ B for every x ∈ Σ∗.
Is such a reduction from A to B exists, we say that A is poly- time mapping
reducible to B, denoted A ≤P B.

The mapping f efficiently converts questions about membership in A to
membership in B.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 29 / 52

Example: CLIQUE ≤P IND-SET

Proof:

Definition 27
The complement of a graph G = (V ,E) is a graph Gc = (V ,Ec), where
Ec = {(v1, v2) : v1, v2 ∈ V and (v1, v2)6∈E}.

The reduction f (G, k) from CLIQUE to IND-SET simply computes the
complement of the graph and outputs (Gc , k).

f satisfies:

I U is a clique in G ⇐⇒ U is a independent set in Gc .

I computable in polynomial time!

♣

Remark 28
Same reduction shows that IND-SET ≤P CLIQUE

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 30 / 52

Reductions to P

Theorem 29

If A ≤P B and B ∈ P then A ∈ P.

Proof:

I Let f the reduction from A to B, computed by TM Mf .
On input x , the TM Mf makes at most cf · |x |af steps.

I Let MB be the poly-time decider for B.
On input y , the TM MB makes at most cB · |y |aB steps.

Algorithm 30 (Decider MA for A)

On input x , return MB(f (x))

I MA decides A
I Since |f (x)| ≤ cf |x |af , running time of MB(x), is at most

cB · (cf · |x |af)aB = (cB · caB
f) · |x |af ·aB ∈ poly(|x |)

Hence, A ∈ P

♣ Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 31 / 52

What A ≤P B tells us about B?

Question 31
Assume that {0n1n : n ≥ 0} ≤P L. Does it yield that L ∈ P?

Answer: No. (Reduction in the wrong direction!)

Let L = HTM,ε and define f (x) =

{
Mstop, x ∈ {0n1n : n ∈ N}
Mno−stop, otherwise. .

A ≤P B does tell us that B is “at least as hard" as A.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 32 / 52

NP completeness, formal definition

Definition 32 (NP-complete)

A language B is NP-complete, if

I B ∈ NP, and

I Every A ∈ NP is poly-time reducible to B (i.e., A ≤P B)

Let NPC denote the class of all NP-complete languages.

Compare to

Definition 33 (RE-complete)

A language B is RE-complete, if

I B ∈ RE , and

I Every A ∈ RE is mapping reducible to B.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 33 / 52

Why NP completeness?

Theorem 34

If B ∈ NPC and B ∈ P, then P = NP.

Proof: Immediately follows by Thm 29. ♣

To show P = NP (and make an instant fortune, see
www.claymath.org/millennium/P_vs_NP/), suffices to find a polynomial-time
algorithm for any NP-complete problem.

Question 35
Is NPC empty?

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 34 / 52

NPC Is not empty

ANP = {〈M, x ,1n〉 : M is a TM ∧ ∃c ∈ Σ∗ s.t. M(x , c) accepts within n steps}.

Theorem 36
ANP ∈ NPC

Proof:

I Clearly ANP ∈ NP.

I Let L ∈ NP, let V be a verifier for L and let p ∈ poly be a bound on the
running time of V (i.e., V(x , ·) halts within p(|x |) steps, for every x ∈ Σ∗).

I Define f (x) = 〈V, x ,1p(|x|)〉.
I f is poly-time computable

I x ∈ L⇐⇒ f (x) ∈ ANP.

♣

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 35 / 52

Finding additional NP-complete languages

Theorem 37
Assume that

1. B ∈ NP

2. A ∈ NPC and A ≤P B

then B ∈ NPC.

Proof: Home exercise . . .♣

We would like to find L ∈ NPC that is “natural" and “easy" to reduce to.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 36 / 52

Section 6

Satisfiability

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 37 / 52

Boolean variables

I A Boolean variable assumes values

I TRUE (written 1), and FALSE (written 0).

I Boolean operations:

I and: ∧
I or: ∨
I not: ¬

I Examples:

0 ∧ 1 = 0
0 ∨ 1 = 1

0 = 1

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 38 / 52

Boolean formulas and SAT

A Boolean formula is an expression involving Boolean variables and
operations.

φ = (x ∧ y) ∨ (x ∧ z)

Definition 38 (satisfiable formula)

A formula is satisfiable, if some Boolean assignment to its variables, makes
the formula evaluate to 1.

The formula φ = (x ∧ y) ∨ (x ∧ z) is satisfiable by the assignment

x = 0
y = 1
z = 0

The language of satisfied formulas:

SAT = {〈φ〉 : φ is a satisfiable Boolean formula}

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 39 / 52

SAT ∈ NPC

SAT = {〈φ〉 : φ is satisfiable Boolean formula}

Theorem 39 (Cook-Levin (early 70s))

SAT ∈ NPC.

I The “most important" NP-complete language.

I It is easy to see that SAT ∈ NP

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 40 / 52

Section 7

Proving SAT ∈ NPC

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 41 / 52

The proof, high level

I Let L ∈ NP and let N = (Q,Σ, Γ, δ,q0,qa,qr) be an t-time NTM that
accepts L, for some t ∈ poly.

I Given the string w ∈ {0,1}∗, construct in time O(p(|w |)2) a formula φN,w
such that: φN,w ∈ SAT iff N accepts w .

I Hence, the mapping w 7→ φN,w is a poly-time reduction from L to SAT,
establishing L ≤P SAT.

I In the following fix L, N and w ∈ {0,1}n.

I We assume wlg. that M(w) halts after exactly t(n) steps.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 42 / 52

The configuration-history Tableau

Consider the t(n)-by-t(n) Tableau that describes a possible accepting
computation history of N on input w .

cell[1,1]

cell[1,t(n)]

q 0 0 10 0 . . .

1 2 3 . . . t(n)

0 0

0

1

I First row represents initial configuration of N on input w .
I i ’th row represents the i-th configuration in a possible computation of N

on input w .

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 43 / 52

The formula φN,w

I Let S = Q ∪ Γ (the alphabet of the configuration history).

I φN,w uses Boolean variables {xi,j,s}i,j∈[t(n)],s∈S.

φN,w = φCell(N) ∧ φStart(w) ∧ φMove(N) ∧ φAccept(N)

I Given an assignment z for φN,w , let T (z) be the t(n)× t(n) Tableau,
defined by setting the j-th cell in i ’th configuration to s, if xi,j,s = 1 in z.

(T (z) is undefined, if xi,j,s′ = xi,j,s = 1 for some s 6= s′ ∈ S, or xi,j,s = 0
for all s ∈ S).

I T (z) will represents a (possible) accepting execution of N(w), iff z is an
a satisfying assignment for φN,w .

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 44 / 52

The formula φCell(N)

φCell(N) guarantees that the variables encode legal configurations:

I Each cell (i , j) has at least one letter:
∨

s∈S xi,j,s.

I No cell (i , j) has two or more letters
∧

s 6=s′∈S xi,j,s ∧ xi,j,s′ .

Together:

φCell(N) =
∧
i,j

(∨
s∈S

xi,j,s

)
∧

 ∧
s 6=s′∈S

xi,j,s ∧ xi,j,s′



Claim 40
If an assignment z satisfies φCell(N), then T (z) is defined.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 45 / 52

The formula φStart(w)

φStart(w) guarantees that the first row encodes the initial configuration (i.e.,
q0w).

φ start(w) =x1,1,q0 ∧ x1,2,w1 ∧ x1,3,w2 ∧ . . . ∧ x1,n+1,wn

∧ x1,n+2, ∧ . . . ∧ x1,t(n),

Claim 41
If z satisfies φCell(N) ∧ φStart(w), then the first line of T (z) is q0w t . . .t︸ ︷︷ ︸

t(n)−n−1

.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 46 / 52

The formula φMove(N)

φMove(N) is the “heart” of φN,w . To construct it, we employ locality of
computations.

Observation: Configuration C, with head location h, yields configuration C′

(with respect to δ), if the following holds.

I C′i =Ci for any i /∈ {h − 1,h,h + 1}
I C′h−1,h,h+1 is consistent (with respect to δ) with Ch−1,h,h+1.

We check that each configuration in T (z) yields the next one, by inducing
local “checks” on z.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 47 / 52

φMove(N) – Rectangles

I A rectangle is a 2× 3 configuration sub-table.

I Assume that δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2, c,L), (q2,a,R)}.
I (some) Legal 2× 3 rectangles:

a q1 b a q1 b a a q1
q2 a c a a q2 a a b

a b a b b b a a b
a b q2 c b b a a b

I (some) Illegal 2× 3 rectangles:

a b a a q1 b b q1 b
a a a q1 a a q2 b q2

I There is a constant number of legal rectangles (determined by δ).

I Denote this set by C = C(δ).

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 48 / 52

φMove(N) – Characterizing legal rectangles

The formula “verifies" that all 2× 3 rectangles in the Tableau are in the list C:

1. a b c
∗ b ∗

2.
a q b
q’ a b’

a q b
a b’ q’

(L,q′,b′) ∈ δ(q,b) (R,q′,b′) ∈ δ(q,b)

3. q ∗ ∗
∗ ∗ ∗

∗ ∗ q
∗ ∗ ∗

• Some rectangles in C are clearly illegal.

• For rectangles on the left-most and right-most side of Tableau, we use
slightly different first type rectangles.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 49 / 52

φMove(N)– formal definition

I For each entry (i , j) ∈ [t(n)]× [t(n)] and c ∈ C, let φMove,i,j,c be the
formula taking the value 1 iff the 2× 3 table of cells in the Tableau whose
upper-left corner is (i , j) is c.

For instance, for entry (1,1) and c =
a q1 b
q2 a d ,

let φMove,1,1,c = x1,1,a ∧ x1,2,q1 ∧ x1,3,b ∧ x2,1,q2 ∧ x2,2,a ∧ x2,3,d

I Finally, let φMove(N) =
∧

(i,j)
∨

c∈C φMove,i,j,c .

Claim 42
If z satisfies φCell(N) ∧ φStart(w) ∧ φMove(N), then T (z) is a possible configuration
history of N(w).

Proof: By induction on the row index. Base case: z satisfies φCell(N) ∧φStart(w).
Assume configuration defined in rows 1, . . . , i is possible and head is in cell j .
The configuration of rows 1, . . . , i + 1 is also possible: Cells of indices not in
{j − 1, j , j + 1}, by first type of rectangles in C. Other cells, by second type
rectangles in C. Q: Why de we need the third type of cells?

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 50 / 52

The formula φAccept(N)

φAccept(N) guarantees that some row encodes an accepting configuration (i.e.,
uqav):

φAccept(N) =
∨
i,j

xi,j,qa

Claim 43
If z satisfies φN,w = φCell(N) ∧ φStart(w) ∧ φMove(N) ∧ φAccept(N), then T (z) is an
accepting configuration history of N(w).

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 51 / 52

Correctness of reduction

I The transformation w 7→ φN,w is computable in time O(n2c).

I An assignment satisfying φN,w , corresponds to an accepting
configuration history of N(w).

I An accepting configuration history of N(w) corresponds to an
assignment satisfying φN,w . (?)

Therefore, N accepts w iff φN,w ∈ SAT. ♣.

I For complete details, consult Sipser chapter 7.4.

Iftach Haitner (TAU) Computational Models, Lecture 12 January 16, 2017 52 / 52

	The Class NP
	Verifiability
	A few more NP languages
	co-NP
	P vs. NP
	NP Completeness
	Satisfiability
	Proving SAT NPC

